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Abstract

This study investigate the impact of fathers’ time investment on children’s human cap-
ital development. Using household data from the PSID time diary and Child Develop-
ment Supplement, we document significant heterogeneity in paternal time investment.
To quantify these effects, we employ a dynamic factor model framework to estimate
the production function for children’s human capital, focusing on cognitive and health
outcomes. To address the endogeneity of parental time investment, we implement a
control function approach that leverages local labor demand shocks as instruments.
Our counterfactual analysis demonstrates that equalizing paternal time investment
across different stages of child development can significantly reduce inequalities in cog-
nitive and health outcomes by adolescence. Specifically, equalizing paternal time during
both early and middle childhood leads to a 22 percent reduction in cognitive disparities
and a 49 percent reduction in health disparities. These findings underscore the pivotal
role of paternal time investment in shaping inequalities in children’s human capital
development.
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1 Introduction

In the economics literature, human capital production functions have become central to
understanding how parental inputs shape child outcomes (Cunha and Heckman, 2007, 2008;
Cunha et al., 2010; Attanasio, 2015; Attanasio et al., 2020). However, these models often
simplify parental inputs, either by focusing solely on monetary investments or assuming
homogeneity between parents. As a result, the heterogeneity in paternal time investments is
frequently overlooked, despite growing evidence that father-specific inputs play a crucial role
in children’s development. On the other hand, intergenerational mobility is another central
issue in economics, reflecting the extent to which individuals can improve their economic
standing relative to their parents. The persistence of earnings across generations has been
linked to various parental characteristics, such as income, education, socioeconomic status,
and wealth, as well as the genetic transmission of traits. This persistence is often viewed
as evidence of unequal opportunities in society (Chetty et al., 2014; Blanden, 2019). A key
determinant of intergenerational mobility is children’s human capital development, which is
strongly influenced by parental investments.

While the economics literature has primarily focused on the relationship between ma-
ternal parenting time, female labor supply, and child development, relatively little research
has investigated the paternal role in child development. Studies show that mothers often
face a trade-off between spending time with their children and participating in the workforce
(Baum II, 2003; Ruhm, 2004; Bernal, 2008; Agostinelli and Sorrenti, 2021). While working
longer hours can boost household income, it often reduces the time available for child en-
gagement. However, questions about whether this same trade-off applies to fathers, as well
as the potential heterogeneity in paternal time investments, remain largely unexplored.

This paper addresses these questions by examining the heterogeneity in parental time
inputs, providing new insights into how these investments shape children’s cognitive and
health outcomes and, by extension, intergenerational mobility. The remainder of this section
first presents stylized facts from the PSID dataset, highlighting distinct patterns in paternal
time investment compared to maternal time investment. Next, we briefly introduce the
human capital production function framework and discuss the results of our counterfactual
exercise in the methodology section, followed by the literature review. Our work emphasizes
the crucial role of paternal time investments in explaining disparities in child development,
thus filling an important gap in the economics literature.

We first present stylized facts about fathers’ time investment using the 1997 PSID time
diary dataset. The fact one is child in household with higher income also receive more
time investment from fathers. Such relation is not true for mothers. Figure 1 illustrates
the relationship between family income and parental time investment, revealing substantial
heterogeneity in the amount of time fathers spend—both actively and passively—with their
children on weekdays and weekends, across various income levels. Notably, while maternal



time shows a more nuanced relationship with family income, paternal time investment is
significantly and positively correlated with family income. This pattern persists regardless
of a child’s race, age, or gender, suggesting that paternal behavior may be highly endogenous.
For instance, fathers with higher incomes may be more educated and thus more aware of the
importance of time investment in their children’s development.

Figure 1: Family income versus parenting hours
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Note: This figure shows the relationship between family income and both active and passive parenting hours
on weekdays and weekends.

The second stylized fact is that data reveals a trade off between working hours and
parenting hours for mothers, as literature often discussed. However, for father, such trade
off is not true. Father who spend more time in labor market also tend to spend more time in
time investment with their children. Figure 2 shows the relationship between labor hours and
parental time investment—Dboth active and passive—on weekdays and weekends. Maternal
time investment exhibits a clear negative correlation with labor hours, consistent with the
well-documented trade-off between labor supply and maternal time discussed previously. In
contrast, paternal time investment initially has a positive correlation with labor hours, but
this relationship becomes negative after reaching a peak. This pattern further supports the
idea that paternal time investment decisions are endogenous.

Given these empirical findings, this paper aims to quantify how the heterogeneity in



Figure 2: Labor hours versus parenting hours
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Note: This figure shows the relationship between annual labor hours and both active and passive parenting
hours on weekdays and weekends.

paternal time investment contributes to inequality in child development. We begin by esti-
mating a dynamic latent factor model of the human capital production function, following a
series of earlier works (Cunha and Heckman, 2007, 2008; Cunha et al., 2010; Attanasio, 2015;
Attanasio et al., 2020). Specifically, we examine children’s human capital across cognitive
and health dimensions, where each period’s levels depend on prior cognition and health as
well as parental time investments, distinguishing maternal from paternal inputs. Our anal-
ysis uses the PSID dataset and categorizes children into three age groups: early childhood
(ages 0 to 5), middle childhood (ages 6 to 11), and adolescence (ages 12 to 18).

Our estimation strategy consists of three steps. First, we assume a semi-log linear rela-
tionship between the observed data and the unobserved latent factors. Under the assumption
that both the log of these latent factors and the measurement system follow a mixture Gaus-
sian distribution, we employ the EM algorithm to estimate their joint distribution. In the
second step, we use minimum distance estimation to link the measurement system to the
latent factors.

Finally, in the third step, we estimate the coefficients of the production function. To
address endogeneity in both maternal and paternal time investment decisions—one of the



main challenges in obtaining consistent estimates—we employ a control function approach.
This approach uses local gender-specific labor demand shocks as instruments for maternal
and paternal time inputs, respectively. Our identification assumption is that, after control-
ling for family income, these local shocks are uncorrelated with unobserved factors in the
child development production function. This strategy follows the methodology of Attanasio
et al. (2020), who used local prices for items like food, clothing, notebooks, and medication
for worms, and Attanasio (2015), who used local prices of toys and food to account for the
endogeneity of parental monetary investment, and Agostinelli and Sorrenti (2021), who used
similar strategies for parental time allocation.

Given the estimated coefficients of the production functions, we then perform a counter-
factual analysis by equalizing paternal time investment among all children across different
developmental stages. The results indicate that applying this treatment during both early
and middle childhood would reduce the variation in cognitive outcomes by 22 percent and
in health outcomes by 49 percent by adolescence. These significant findings underscore the
crucial role that heterogeneity in paternal time investment plays in driving disparities in
children’s human capital development.

This paper contributes to the literature in several ways. It adds to the intergenerational
mobility literature (Chetty et al., 2014; Blanden, 2019) by identifying a new mechanism,
heterogeneous paternal time input, as a driver of intergenerational persistence. It also con-
tributes to research applying dynamic latent factor models to child human capital devel-
opment (Attanasio, 2015; Attanasio et al., 2020), building on the framework of Cunha and
Heckman (2007, 2008); Cunha et al. (2010). Our work highlights the critical role of fathers
in explaining inequalities in children’s cognitive and health outcomes.

While the economics literature has primarily focused on maternal time investment, re-
search in sociology, developmental psychology, and family studies has long emphasized the
importance of paternal involvement in child development. Lamb (2004) shows that father en-
gagement through direct interaction, accessibility, and responsibility affects child outcomes,
challenging the traditional maternal focus. Cabrera et al. (2007) finds that paternal in-
volvement in caregiving and play uniquely contributes to children’s development, offering
complementary stimulation. Sarkadi et al. (2008) concludes that both the quantity and
quality of paternal engagement are essential for better cognitive, emotional, and social out-
comes. This paper builds on these findings by incorporating paternal time investment into
the dynamic production function of children’s human capital. By examining the heterogene-
ity of parental time inputs, this study contributes to the literature by recognizing the role
of paternal time in shaping intergenerational mobility.

In addition to empirical studies, the econometrics literature has focused on develop-
ing methods for identifying and estimating dynamic latent factor models (Agostinelli and
Wiswall, 2016a,b; Freyberger, 2021), while other works have modeled the endogenous parental
decision-making process in child development (Del Boca et al., 2014; Yum, 2023; Agostinelli



and Sorrenti, 2021).

The rest of the paper is structured as follows. Section 2 describes the data used in
this study. Section 3 details the dynamic latent factor model that we estimate. Section
4 provides a more detailed discussion of the estimation strategy. Section 5 presents the
estimation results and conducts counterfactual analyses. Finally, Section 6 offers concluding
remarks.

2 Data, Measurement and Instrumental Variables

In this study, we utilize the PSID Child Development Supplement (CDS), a longitudi-
nal dataset that provides detailed information on child development, health, and parenting
within families, drawn from the broader Panel Study of Income Dynamics (PSID). Launched
in 1997 and updated in multiple waves (2001, 2007, 2013, and 2019), the CDS has become
an invaluable resource for child development research. Its comprehensive and longitudinal
design offers deep insights into the factors influencing child development across diverse popu-
lations. For example, studies such as Del Boca et al. (2014), Del Boca et al. (2016), Del Boca
et al. (2017), Del Boca et al. (2019), and Del Boca et al. (2023) have drawn on this rich

dataset to explore various aspects of parental involvement and its effects on child outcomes.

Our dataset comprises two distinct groups of children. The first group includes children
who were between the ages of 0 and 17 during the initial waves in 1997, 2001, and 2007.
By the 2013 wave, all children in this group had reached adulthood. Consequently, the 2013
and 2019 waves focus on a second group of children who were aged 0 to 17 and lived in PSID
families during these later years.

In total, our unbalanced panel consists of 5,463 children. Among these, 2,194 children
were measured in both the 1997 and 2001 waves, and 1,086 children were observed in all
three waves of 1997, 2001, and 2007. This dataset provides a rich resource for analyzing
developmental trajectories and the influences on child outcomes over time across different
cohorts.

As shown in Table 1, mothers spend more time on parenting than fathers across all
measures—whether active or passive, and during both weekdays and weekends. Family
income and childcare expenditure are deflated by the CPI index.

The dataset provides a comprehensive set of attributes covering various aspects of child
development, family dynamics, and parental participation. These attributes are organized
into several key domains, each offering valuable insights into the factors that influence child
outcomes. In what follows, we describe the specific measures used in each domain and
introduce the construction of the instrumental variables employed to address the endogeneity
of parental time investments.



Table 1: First and second moments of some household statistics and parenting hours

Mean SD
Maternal year of schooling 7.73 5.29
Paternal year of schooling 12.94 2.30

Annual total family income (2015 price) 8260.03 7792.47
Annual child care expenditure (2015 price) 163.31  383.45

Girls 0.49 0.50
White 0.50 0.50
Age 6.01 3.66
Mother active hours on a weekend 4.61 3.34
Father active hours on a weekend 2.73 3.19
Mother passive hours on a weekend 3.54 2.88
Father passive hours on a weekend 2.04 2.58
Mother active hours on a weekday 2.90 2.55
Father active hours on a weekday 1.11 1.61
Mother passive hours on a weekday 2.43 2.26
Father passive hours on a weekday 0.95 1.47

Note: Based on PSID-CDS data in 1997. Monetary values are deflated by the CPI index. Parenting is
classified as active when a parent participated and passive when a parent participated and passive when
the parent was only present in the house. Family total income consists of both father’s and mother’s labor
income, as well as household non-labor income or debt.



2.1 Child Mental and Physical Health

Child mental health is assessed using the Child Depression Inventory in the PSID, which
evaluates various dimensions such as appearance, crying, task performance, friendships, ir-
ritability, isolation, feelings of love, sadness, self-hate, and optimism. Physical health is
measured using indicators such as height, weight status, and Body Mass Index (BMI), ad-
justed for the child’s age and gender.

2.2 Cognition

Child cognitive abilities are evaluated using the Woodcock—Johnson tests across multiple
domains, including applied problems, broad math, broad reading, calculation, letter—word
identification, and passage comprehension. In addition, for children aged 7 and older, the
Memory for Digit Span assessment—a component of the Wechsler Intelligence Scale for
Children-Revised (WISC-R)—is administered to measure short-term memory (7).

2.3 Parenting

Parent—child interactions are measured using indicators of various activities, such as
building something together, cleaning the house, discussing books and family matters, en-
gaging in crafts, doing dishes, performing yard work, shopping, playing games or sports,
preparing food, using the computer, and washing clothes together.

Parental warmth is assessed through indicators such as discussing TV programs (for
children aged 6 and above), expressing appreciation, engaging in favorite activities, attend-
ing parenting classes before birth, playing together, saying “I love you”, showing physical
affection, and discussing current events, interests, relationships, and daily activities.

2.4 Parental Time Investment

Parental time investment is measured using a 24-hour time diary from the PSID, which
records detailed information about a child’s activities on both a randomly selected weekday
and a weekend day. The diary captures start and end times, activity types, locations,
and social interactions. Parental involvement is further categorized into passive and active
participation, with separate records for weekday and weekend activities.



2.5 Family Environment

The family environment is assessed across three main domains. The first domain exam-
ines family conflict, including the calmness of family discussions, the frequency of family
arguments, physical altercations, and instances of objects being thrown. The second domain
evaluates cognitive stimulation at home, as measured by indicators such as the number of
books read in the past year, the total number of books in the household, and the presence of
cellphones. The third domain captures aspects of the home and neighborhood environment,
including noise levels both inside and outside the house, as well as overall cleanliness.

2.6 Local Labor Demand

Following Agostinelli and Sorrenti (2021), to address the potential endogeneity of parental
time investment, we propose using local gender-specific labor demand as an instrument for
time spent with children. In addition, we adopt the leave-one-out approach proposed by
Borusyak et al. (2022) such that when calculating the national industry trend, we leave the
own state out.

The instrument is derived from the harmonized microdata provided by the IPUMS CPS,
which compiles individual records from the Current Population Survey (CPS) from 1962 to
the present. Our measure captures state-level fluctuations in employment opportunities for
women and men, by education group, that are plausibly exogenous to family-level determi-
nants of parenting.

The construction of the instrument follows the logic of a shift-share or Bartik-style in-
strument, as first introduced in Bartik (1991) and developed further in Goldsmith-Pinkham
et al. (2020). For each state s, education group e, gender g, and year ¢, we compute predicted
employment growth as

E?
g o ind,se,1980
LabDemShocky, , = E (In Eina,—s,t — In Eing —s.1980) - B (1)
ind 86,1980

where Finq s, is national employment in industry ind excluding state s, and %35—;;?0 is
the baseline 1980 employment share of group ¢ in industry ind within state s and education
group e. This ”shift-share” design isolates variation that comes from national industry trends
(the shifts) which is leave one out Borusyak et al. (2022), weighted by the pre-determined
industry composition of each state and education group (the shares). We construct sepa-
rate measures for women and men using CPS ASEC data. Education is grouped into four

categories: less than high school, high school graduate, some college, and college or more.

The exclusion restriction is that local labor demand shocks affect child outcomes only
through their impact on parental employment opportunities and, consequently, parental time



Table 2: First-Stage Regression: Labor Demand Shocks and Parental Time Investment

Univariate Both Instruments

Dependent Variable: Paternal Maternal Paternal Maternal

Male Shock -0.39%** -0.36** -0.30
(0.15) (0.15)  (0.21)

Female Shock -1.59%F* (. 58%F* ] HTHHE
(0.24)  (0.16)  (0.24)
Observations 6,615 6,615 6,615 6,615
F-statistic 7.23 43.55 9.74 22.77

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Regressions include fixed effects.
The dependent variables are parental time investment on weekdays. Shocks are standardized to have mean
zero and unit variance. Columns (1) and (2) show univariate regressions, while columns (3) and (4) include
both instruments to demonstrate distinguishing power.

inputs. While this assumption cannot be tested directly, we present robustness checks that
include additional state-level controls and compare female and male shocks as a way to
validate the instrument.

To validate the relevance of our instruments, Table 2 presents first-stage regression re-
sults showing the relationship between gender-specific labor demand shocks and parental
time investment. The results demonstrate that our instruments are statistically significant
predictors of parental time allocation. Male shocks negatively predict paternal time invest-
ment, while female shocks negatively predict maternal time investment. These first-stage
results confirm the relevance of our instrumental variables approach.

The results demonstrate both instrument relevance and distinguishing power between
male and female labor demand shocks. In the univariate regressions (columns 1 and 2), male
shocks significantly predict paternal time investment, while female shocks strongly predict
maternal time investment. When both instruments are included simultaneously (columns 3
and 4), we observe clear gender-specific patterns: male shocks primarily affect paternal time,
while female shocks have their strongest effect on maternal time. Notably, cross-effects exist
but are weaker—female shocks also significantly affect paternal time, while male shocks have
a smaller, non-significant effect on maternal time. This distinguishing power justifies using
both instruments in our control function approach, as they provide differential identification
for maternal and paternal time investments in the production function.

2.7 Exclusion Restriction and Home Environment Measures

A natural concern is that local labor demand shocks may affect not only parental time
inputs, but also other dimensions of the home environment that matter for child develop-
ment. If labor market fluctuations systematically change household conflict, stimulation, or



material conditions, then our exclusion restriction would be violated.

A second concern is that changes in parental employment opportunities may also affect
the time spent with children by relatives or nonrelatives, such as grandparents, other family
members, or childcare providers. If labor demand shocks alter these alternative caregiving
arrangements, then our instruments would capture broader changes in the child’s social
environment beyond direct parental time investment.

To address this, we exploit rich measures of the child’s home environment available in
the PSID Child Development Supplement (CDS). These include: (i) parental conflict and
warmth scales, and (ii) measures of orderliness such as noise levels and cleanliness. Each
of these captures a complementary channel through which labor demand shocks could, in
principle, influence child outcomes beyond time investment.

We proceed in two steps. First, we group items into conceptually coherent domains
following the HOME inventory and related literature. Second, we apply principal compo-
nents analysis (PCA) within each domain to extract a standardized index. This reduces
dimensionality and ensures that our tests are not sensitive to arbitrary variable choice or
multiple-hypothesis testing.

Our exclusion restriction implies that local gender-specific labor demand shocks should
not systematically predict these home environment indices, conditional on household income
and demographic controls. Empirically, we find that the shocks are strongly predictive of
parental time investments, but they have no robust effect on home environment measures.
This supports our interpretation of the shocks as exogenous variation in parental time inputs,
rather than general changes in household quality.

Table 3 presents formal tests of the exclusion restriction by regressing various omitted
variables on both male and female labor demand shocks. The results show that neither
instrument significantly predicts the potential omitted variables. For male shocks: non-
parental care hours, family conflict, and orderly environment all show non-significant effects.
For female shocks: non-parental care hours, family conflict, and orderly environment also
show non-significant effects. These null results provide empirical support for the exclusion
restriction, as both instruments appear to affect child outcomes primarily through parental
time investment rather than through alternative channels.

2.8 Home Environment Measures

To capture dimensions of the child’s home environment, we use information from the
PSID Child Development Supplement (CDS) and construct two standardized indices via
principal component analysis (PCA). Each measure is designed such that higher values cor-
respond to more adverse or more enriched environments, depending on the construct. The
advantage of this approach is that it aggregates multiple related survey items into a parsi-
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Table 3: Exclusion Restriction Tests: Labor Demand Shocks and Omitted Variables

Dependent Variable:

Non-parental Care Hours Family Conflict  Orderly Environment

(1) (2) (3) (4) () (6)

Male Shock 0.034 -0.088 0.111
(0.043) (0.051) (0.069)
Female Shock 0.054 -0.004 0.091
(0.049) (0.046) (0.054)
Observations 4,059 4,059 882 882 325 325
F-statistic 0.63 1.23 2.98 0.01 2.58 2.82
P-value 0.427 0.267 0.085 0.928 0.109 0.094

Note: Standard errors in parentheses. Regressions include fixed effects. Non-parental care hours measures
time spent with children by relatives or non-relatives on weekdays. Family conflict and environment are
standardized PCA indices from the PSID Child Development Supplement. All dependent variables are
potential omitted variables that could violate the exclusion restriction if systematically affected by labor
demand shocks.

monious continuous score while reducing measurement error and collinearity across highly
correlated items. We construct two home environment indices—parent—child conflict and
household orderliness—by applying principal component analysis (PCA) to the correspond-
ing sets of survey items. In each case, the first principal component explains a sizable share
of the variance (between 44-58%) and loads positively on the expected dimensions. We
standardize the resulting scores for ease of interpretation. Full PCA loadings, eigenvalues,
and variance explained are reported in Appendix Tables A1-A3.

Parent—Child Conflict. We measure the degree of conflict within the family using five
items from the CDS wave. Children were asked whether their family: (i) fights a lot, (ii)
throws things, (iii) calmly discusses disagreements, (iv) criticizes one another, and (v) hits
each other. The item on calm discussion was reverse-coded so that higher values indicate
more conflict. We then performed PCA on these five indicators, and retained the first
component, which explains 44% of the total variance. This index captures the intensity of
conflictual interactions in the household.

Orderly Environment We also measure the degree of household orderliness using three
items: (i) whether rooms in the home are clean, (ii) whether the inside of the home is noisy,
and (iii) whether the outside environment is noisy. The noise variables were reverse-coded
so that higher values indicate a more orderly and less chaotic home. A PCA was then
conducted, with the first component retained, explaining 58% of the variance. The resulting
index captures the physical and auditory orderliness of the child’s immediate environment.

11



Summary. FEach PCA score was standardized to mean zero and standard deviation one.
In robustness checks, we use these measures to ensure that our instrumental variables (local
labor demand shocks) predict parental time allocation but not broader aspects of the home
environment.

2.9 Falsification Test

A key concern with our identification strategy is that local labor demand shocks might
capture persistent state-level trends that are correlated with parental time investment, rather
than truly exogenous variation. To address this, we conduct a falsification test using future
shocks. Specifically, we re-estimate the first-stage regressions but replace contemporaneous
shocks with shocks occurring one, two, and three survey waves ahead. If our instruments
capture unanticipated fluctuations in local employment opportunities, then future shocks
should have no predictive power for current parental time.

Table 4 reports the results. For paternal time, the coefficient on the contemporaneous
male shock is negative and statistically significant (-0.389, p=0.007), confirming instrument
relevance. However, future male shocks have no predictive power: -0.045 (p=0.720) for t+1
and 0.037 (p=0.758) for t+2. Similarly, for maternal time, the contemporaneous female shock
is highly significant (-1.587, p<0.001), while future shocks are insignificant: -0.119 (p=0.583)
for t+1 and -0.071 (p=0.696) for t+2. These null results support our interpretation of the
instruments as exogenous and unanticipated shocks to local labor demand.

Table 4: Falsification Test: Current vs. Future Labor Demand Shocks

Paternal Time Maternal Time
Current t+1 t+2 Current t+1 t+2
(1) (2) (3) (4) (5) (6)
Male Shock -0.389*%**  _0.045  0.037
(0.145)  (0.125) (0.119)

Female Shock -1.587*%*  _0.119 -0.071
(0.240)  (0.216) (0.183)

Observations 6,615 6,531 6,070 | 6,615 6,531 6,070

R-squared 0.001 0.000 0.000 0.007 0.000 0.000
F-statistic 7.23 0.13 0.10 43.55 0.30 0.15
P-value 0.007 0.720 0.758 0.000 0.583 0.696

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All regressions include fixed effects.
Columns (1) and (4) show contemporaneous effects (first-stage), while columns (2)-(3) and (5)-(6) show
future shocks which should have no predictive power if instruments are truly exogenous. The insignificant
future coeflicients support our identification strategy.

12



3 Dynamic Latent Factor Model

To understand the process of human development and the role of parental investment, we
build upon the seminal works on children’s skill formation by Cunha and Heckman (2007)
and Cunha et al. (2010), which employ a dynamic latent factor model. This framework is
comprised of three key components: first, the technology of skill formation (or equivalently,
the human capital production function); second, the instruments used to address the endo-
geneity of parental investment decisions, particularly those related to time investment; and
third, the measurement system that links observable data to unobservable latent factors. In
what follows, we discuss each of these components in detail.

3.1 Human Capital Technology

We begin by specifying that the development of children’s human capital comprises two
primary dimensions: cognitive skills (6.) and physical health (6},), as is commonly addressed
in the literature. To account for the different developmental stages of childhood, we catego-
rize children into three age groups: early childhood (ages 0 to 5), middle childhood (ages 6
to 11), and adolescence (ages 12 to 18). From this point forward, we refer to these stages
as Stage 1, Stage 2, and Stage 3, respectively. This classification allows us to model the
evolution of cognition and health through dynamic production functions that span these
stages, resulting in two periods of production (t = 1,2).

In each period, a child’s cognition (f.;+1) and health (65.11) in the subsequent stage
depend on several factors: their current cognition (6.;) and health (6};), the mother’s time
investment (I,,;), the father’s time investment (I;;) during that stage, and positive total
factor productivity (TFP), denoted by (A., Ap:), which captures the efficiency of inputs in
producing cognitive skills and health outcomes, respectively.

We assume a Constant Elasticity of Substitution (CES) form for the technology:

1

Octr1 = [ac,t(ec,t)pt + ah,t<0h,t>pt + @m,t(Im,t)pt + af,t([f,t)pt] ot Acy @)
1

Oni+1 = [60,t(96,t)<t + 5ht(9h,t)<t + ﬁm,t(lm,t)Ct + 5f,t<ff,t)ct] & Apy

With the input shares a; and ; summing to 1 respectively, we are particularly interested
in the values of (py, ;), which govern the elasticity of substitution among the various inputs in
the production process. When these parameters equal 1, the production function described in
Equation 2 simplifies to a linear function, implying that all inputs are perfectly substitutable.
In contrast, when these parameters are less than 1, the inputs become complementary. In
particular, when they equal 0, the function reduces to a Cobb-Douglas form, where the
elasticity of substitution is 1.

An alternative functional form to consider is the translog form, as discussed in Freyberger

13



(2021), which offers additional flexibility to capture interactions among inputs.

The next equations determine the log of total factor productivity (TFP):

IOg Ac,t = d()t + detXt + uc,t

(3)

log Ant = got + 9 Xt + uny

We assume that log of TFP is a linear function of a set of family characteristics, repre-
sented by the covariate X;. These characteristics include race, the gender of the children,
and time-varying family income. Family income, which captures material parental invest-
ment, is incorporated as part of TFP rather than as a separate input to human capital. This
simplification is motivated by two main reasons: first, our focus in this paper is specifically
on the effects of parental time investment, and second, the findings of Del Boca et al. (2014)
using the same PSID dataset suggest that monetary inputs are less productive compared to
parental time investment.

3.2 Control for the Endogeneity of Parental Time Investments

Next, we introduce additional equations to account for the endogeneity of parental time
investments. This step would be unnecessary if parental time investment were exogenous,
conditional on the current stage of a child’s cognitive and health status as well as household
characteristics. However, endogeneity arises because parents may adjust their time invest-
ments in response to the evolving human capital of their children. For example, a father
might choose to spend more time reading with his child upon recognizing the child’s apti-
tude for learning. In such cases, identification requires instruments that affect parental time
investments but are excluded from the child’s human capital production function.

As explained in Section 2, we use the residuals from the deviation of gender-, race-, and
state-specific linear trends in employment as proxies for local labor demand shocks. Our
identification assumption is that these race- and gender-specific variations in local labor de-
mand are uncorrelated with omitted inputs in the child’s human capital production function
after controlling for family income, which is incorporated into the household characteristics.
The empirical specification of parental time investments (/,,¢, I;) is as follows:

In Loy = Yo + Ve I Ocy 4+ Yne O + 75, Xo + 75,10 Zi g + Uy (4)
In Ty =m0+ Neg Oy 4 nue IOy + 1 Xy + 0y, 0 Zsy 4 vy,

where (Z,,+, Zs;) are the instruments. Using these instruments, we apply a control
function approach (Gronau, 1974; Heckman, 1979; Heckman and Navarro-Lozano, 2004).
Specifically, endogeneity arises because the error terms (vy,+, vr;) in Equation (4) are corre-
lated with the error terms (¢, up,) in the production function (Equation 2). Therefore, we
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assume a linear specification conditional on the information set:

E (Uc,t Qt> Zt) = Kem Umit + Ke,f Ut t
E(uny | Qu, Zt) = Khm Ut + Knf Usy

(5)

where (); denotes the full set of variables in the production functions, including parental
time investments, and Z; represents the instruments. The control function approach is
implemented by including the regression residuals (0, ¢, U,) from Equation (4) as additional
regressors in Equation (2).

3.3 The Measurement System

Since many of the variables in the production function are measured in multiple ways
within the dataset, a simple selection of one proxy may introduce bias of unknown direction
due to the nonlinearity of the production function (Griliches and Ringstad, 1970). To address
this challenge, we apply the latent factor framework proposed by Cunha et al. (2010). Rather
than using the flexible nonparametric identification procedure outlined in that work, we
assume a specific functional form, as in Attanasio et al. (2020), for simplicity.

We begin by assuming a semi-log mapping between the observed measures and the latent
variables:

Mkt = Gt + Nt 10 (Ot) + €1 (6)

where m; ; + denotes the jth measure associated with the kth latent variable at time ¢, and
Aj.kt 18 the corresponding factor loading. Representing the loadings in log form is convenient
since the production function incorporates the logarithm of the latent factors. We assume
that the measurement error €, is separable, normally distributed, and independent of both
the latent factor 05, and the other measurement errors.

For compactness, we can express the above equation in matrix form as

M=A+An6+ e (7)

where we define I as the number of measures and J as the number of latent factors. In
this formulation, M is a vector of length I representing all the measures from the dataset,
A is a vector of length I representing the constant terms, and ¢ is a vector of measurement
errors of length I. Moreover, ¥ is the I x I diagonal matrix, and A is the factor loading
matrix of dimensions / x J. Finally, In 6 is a vector of length J containing the log-transformed
latent factors.

We now consider the joint distribution of the log-transformed latent factors. Given
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the semi-log mapping in Equation (6), a natural functional form is joint normality, due to
its closure under linear combinations. However, assuming joint normality would impose
additional restrictions on Equation (2), effectively reducing the CES production function to
a Cobb-Douglas form (which is linear in the log form). To avoid this, we instead assume
that the joint distribution is a mixture of Gaussians. This approach preserves the desirable
property of closure under linear combinations while allowing for greater flexibility.

The next question is determining the appropriate number of clusters for the Gaussian
mixture. In our implementation, we experimented with up to 5 clusters and observed that
once the number of clusters reached 3 or more, the distance between clusters became insignif-
icant. This indicates that increasing the number of clusters did not substantially improve
the approximation of the true underlying distribution. Therefore, we adopt a parsimonious
approach and use only 2 clusters in our model:

Fy =7 ® (pa, Qa) + (1= 7) (15, 25) (8)

Here, 7 represents the mixture weight, i.e., the probability that an observation is drawn
from the first Gaussian component. The parameters (14, 24) and (up, 2p) denote the mean
and variance of the first and second components, respectively. The semi-log mapping between
the observed measures and the latent factors then yields a mixture Gaussian distribution for
the measurement system:

Fap =70 (4, W) + (1 = 7)® (I3, Up) (9)

Here, (IT4, U 4) and (Ilp, V) denote the mean and variance of the measures in the first
and second clusters, respectively. This formulation enables us to establish the mapping
between the parameters characterizing the mixture distribution of the latent factors and
those of the measures. The mapping is defined as follows:

\IJA:ATQAA—i—Z, HA:A—{—A,UA

T (10)
\I/B:A QBA+Z, HB:A+AMB

Finally, in addition to the latent variables in our model, there are observable variables
used in the production functions and as instruments in the time investment equations. These
variables are considered error-free and are included in both the measurement system and the
latent variable system. This inclusion results in an augmented system of mixture Gaussian
distributions for the latent factors:

Fox =70 (155, 05°) + (1= 1)@ (ug*, 05) (11)
This also results in an augmented system of mixture Gaussian distributions for the mea-
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surement system, along with an expanded mapping between the parameters of the latent
variable distributions and those of the measurement system. To avoid unnecessary notational
complexity, we omit the detailed equations here.

4 Estimation Strategy

In the following, we describe the estimation strategy we adopt following Attanasio, Meghir
and Nix (2020), which consists of three steps:

Step 1: We use the expectation-maximization (EM) algorithm (Dempster, Laird and
Rubin, 1977; McLachlan and Krishnan, 2007) to estimate all parameters characterizing the
mixture Gaussian measurement system. These parameters include the weight 7, the mean
vectors (I14,11p), and the covariance matrices (W4, Up).

In the context of the Gaussian Mixture Model (GMM), the Expectation-Maximization
(EM) algorithm is an iterative procedure that alternates between an Expectation (E) step
and a Maximization (M) step, each providing closed-form updates for the parameters.

Based on the notation for the mixture distribution of the measurement system from
Equation (9), we define the following notation for our EM algorithm in the context of the
Gaussian Mixture Model (GMM):

e N: the number of observations.

I: the number of dimensions (i.e., measures) in each observation.

e K: the number of clusters; in our context, K = 2.

Y: the observed dataset with shape (N, I).

e IV: the unobserved latent variable representing the true cluster memberships, with
each element binary and shape (N, K); each cluster is denoted by Wi.

e W: the estimated probability matrix of cluster memberships, with shape (N, K'), where
each element represents the current estimated probability that an observation belongs
to a specific cluster.

0 = {7k, 1L, ‘ilk}kK:l: the set of current parameter estimates of the GMM, where for

each cluster k:

— T3 is the estimated mixing coefficient for cluster k, representing the probability
that a randomly chosen observation belongs to that cluster. The collection {7 }5_,
forms a K x 1 vector that sums to 1.

— 11, is the estimated mean vector for cluster k, with dimensions I x 1.
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— U}, is the estimated covariance matrix for cluster k, with dimensions I x I.

With this notation, the EM algorithm proceeds as follows:
E-step: For each cluster k, we compute W by

o (~4 diag((V — ) & (v - )7

(2m)! det ()

Wi =E[W, | Y;6] = (12)

A

M-step: Using the estimated responsibilities W, from the E-step, we update © =
{%kanlm \Ilk}szl by

YW,
k= s
1T,
1717,
o 1LW
T = NN k?

where 1y is a column vector of ones of length V.

However, while the Gaussian assumption yields closed-form solutions for both the E-step
and M-step, our application faces challenges due to a significant amount of missing data. This
issue arises from the structure of the PSID dataset, where most children are observed in only
one or two waves of data collection. As a result, the updates in the EM algorithm must be
conditioned on the observed data for each observation, forcing us to loop over observations
rather than employing the more efficient vectorized operations described in Equations 12
and 13. This reliance on loops considerably slows computational time. Additionally, the
temporary parameters obtained in each iteration must be managed carefully to prevent the
formation of ill-conditioned matrices in subsequent iterations.

Step 2: We then apply minimum distance estimation to recover the parameters that
characterize the joint distribution of the latent variables #. Specifically, we estimate the
shift vector A, the factor loading matrix A, the measurement error matrix ¥, as well as the
mean vectors 4 and pp and the covariance matrices 24 and {25 based on the parameters
obtained in Step 1.

Before implementing the minimum distance estimation, which is a nonlinear optimization
procedure, it is essential to impose a set of restrictions to reduce the degrees of freedom in
the parameter space. We now state these restrictions as follows:

1. Normalization on the latent factor: For the augmented latent factor (6, X), we
normalize the time-invariant variables so that the mean of their logarithms is zero. For
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the time-varying variables, we normalize only the first period to have a mean log of
zero, allowing the log values in subsequent periods to be interpreted as growth relative
to the first period.

2. Restrictions on the factor loadings: We assume that each measure is linked to
only one underlying factor, meaning that only the corresponding factor loading is
non-zero. In addition, we set the scale of the latent factor by normalizing one of
the measurements, referred to as the primary measurement, with its associated factor
loading fixed at one. For example, for child cognition, we normalize the loading on
the Woodcock-Johnson letter-word test to one; for child health, we normalize on the
z-scores of height; and for parental time investment, we normalize on active hours spent
with the child on a weekday. This assignment of primary measurements is maintained
consistently across periods.

3. Restriction on the constant term: We assume that the growth of the measure-
ments is solely due to the growth of the associated latent variables. Together with
the normalization of the loading to the first measurement for each latent variable (as
described in point 2), this imposes a restriction on the constant vector A such that the
elements corresponding to the first measurement remain unchanged over time. Con-
sequently, we only need to determine their values in the first period. Point 1 implies
that we can set the constant term in A for the first period equal to the mean of the
measurements from the data.

Step 3: We generate a synthetic dataset from the parametric joint distribution of the
latent factors estimated in Steps 1 and 2. Next, we estimate the parameters of interest in the
production function system (Equation 2) using a control function approach, implemented as
a two-stage estimation procedure. In the first stage, we perform OLS regression on Equation
4 to obtain the residuals. These residuals are then included as additional regressors in the
linear part of the production function. In the second stage, we estimate the log form of
Equation 2 using nonlinear least squares.

5 Results and Counterfactual Analysis

We follow the estimation procedure discussed in Section 4, employing a bootstrap ap-
proach with 100 iterations to construct the 90% empirical confidence intervals.

5.1 Estimates

We begin by presenting the estimated joint distribution of the latent factors obtained
from Steps 1 and 2 of our estimation procedure. Table 5 reports the results, showing the
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mixture weights and the mean vectors for each cluster in the Gaussian mixture model that
characterizes the joint distribution of these latent factors. For brevity, the covariance matri-
ces are omitted.

The estimated mixture weights indicate that approximately one-third of the observations
belong to the first cluster (Mixture A), while two-thirds belong to the second cluster (Mixture
B). This suggests a meaningful division within the population, with Mixture B representing
the majority.

The table reflects differences in parental investment between the two mixtures. For
example, both maternal and paternal investments in children’s development are consistently
higher in Mixture A across all age groups. This suggests that families in Mixture A may
prioritize time spent with their children more than those in Mixture B, which could contribute
to the observed differences in cognitive and health outcomes.

These results collectively underscore the necessity and effectiveness of employing a Gaus-
sian mixture model to capture heterogeneity in the population. The significant differences
in the means of most latent variables between the two clusters indicate a substantial depar-
ture from a simple multivariate normal distribution. This finding supports our decision to
implement a mixture model, which provides a more nuanced and accurate representation of
the underlying data structure.
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Table 5: Weights and means of the Gaussian mixture model for latent factors

Mixture. A Mixture.B
Weights 0.382 0.618
[0.36,0.39] 0.61,0.64]
Mean Cognition Stage 3 2.235 2.254
[2.17,2.266) 2.236,2.32]
Mean Cognition Stage 2 1.846 1.635
[1.816,1.871] [1.617,1.652)
Mean Cognition Stage 1 0.408 —0.251
[0.352,0.436] [—0.269,—0.206]
Mean Health Stage 3 2.153 2.265
[1.33,2.219)] [2.21,2.281]
Mean Health Stage 2 1.697 1.377
[1.659,1.718] [1.361,1.397]
Mean Health Stage 1 —0.067 0.042
[~0.106,—0.042] [0.025,0.065]
Mean Mom’s Investment Stage 3 1.603 0.121
[1.568,1.655] [0.073,0.185)
Mean Mom’s Investment Stage 2 1.334 —0.836
[1.306,1.358] [0.857,—0.819)]
Mean Mom’s Investment Stage 1 0.544 —0.336
0.511,0.599] [0.361,—0.305]
Mean Dad’s Investment Stage 3 2.109 0.519
2.071,2.156] [0.471,0.603]
Mean Dad’s Investment Stage 2 1.932 —0.847
[1.908,1.962] [—0.866,—0.829]
Mean Dad’s Investment Stage 1 0.928 —0.573
[0.883,1.01] [~0.613,—0.517]

Notes: 90% confidence intervals based on 100 bootstrap replications in square brackets.

We next present the results from Step 3, which show the estimated coefficients of the
production function in Table 6. A crucial finding is that the estimated elasticity parameters
(pe, ;) all lie between 0 and 1, indicating that the elasticity of the production function is less
than 1. This suggests that the inputs in the production of a child’s cognition and health are
complementary, consistent with the findings reported in Attanasio et al. (2020). Another
important observation is that a child’s initial health status has a dominant impact not only
on its subsequent health— indicating a strong self-productivity effect—but also on cognition
during childhood (ages 6-12). This influence remains significant as the child transitions
from childhood to adolescence. Conversely, the self-productivity effect of cognition is less
pronounced during childhood but becomes more significant during adolescence.

Regarding parental time investments, our estimation results indicate that both mater-
nal and paternal time investments have an insignificant direct effect on child health. This
finding is plausible, as a child’s physical health is likely more directly influenced by mate-
rial investments. However, parental time investments are crucial for cognitive development.
Specifically, paternal time investment is significant during early childhood, while maternal
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time investment becomes significant during adolescence.

Furthermore, we find that the coefficients on the paternal time investment residuals are
significantly different from zero for child health during childhood and for cognition during
adolescence. This suggests that paternal time investment is endogenous and correlated with
unobservable factors in the production function at different stages of child development.

Table 6: Estimated values and confidence internal of the coefficients in the production func-

tions

Cog, Stage 2 Health, Stage 2  Cog, Stage 3  Health, Stage 3
Cognition —0.019 0.013 0.399 0.198
[—0.082,0.038] [~0.077,0.026] [0.288,0.435)] [0.154,0.315]
Health 0.946 0.961 0.406 0.685
[0.874,0.993] 0.9,1.019] [0.352,0.595)] [0.551,0.909]
Mom’s time —0.113 —0.043 0.165 0.053
[—0.211,0.046] [~0.119,0.168] [0,0.264] [—0.193,0.159]
Dad’s time 0.186 0.069 0.03 0.064
0.036,0.273] [~0.082,0.151] [~0.121,0.173] [—0.172,0.15]
Mom'’s time ctrl func —0.02 —0.037 0.02 —0.023
[—0.069,0.094] [—0.083,0.092] [—0.034,0.066] [—0.186,0.017]
Dad’s time ctrl func 0 —0.159 0.134 0.107
[—0.044,0.088] [~0.22,—0.031] 0.006,0.211] [~0.104,0.172]
elasticity parameter 0.221 0.416 0.336 0.711
[—0.118,0.868] [—0.438,0.736) [0,0.635] [—0.098,0.884]
Family income 0.128 —0.003 0.082 0.024
[0.098,0.138] [~0.027,0.015] [0.064,0.1] [~0.007,0.035)
White 0.08 —0.036 0.079 —0.004
[0.036,0.125] [0.076,—0.004] 0.061,0.129)] [—0.045,0.042]
Female 0.084 0.018 0.001 —0.228
0.047,0.114] [~0.012,0.051] [0.039,0.023] [—0.259,—0.189)]
constant 1.568 1.465 0.707 0.785
[1.501,1.634] [1.386,1.557] 0.612,0.755) [0.213,0.866]
Residual standard error 0.451 0.248 0.35 0.34
[0.426,0.479)] [0.202,0.294] [0.32,0.386) [0.304,0.599]

Notes: 90% confidence intervals based on 100 bootstrap replications in square brackets.

5.2 Counterfactual Analysis

Using the estimated coefficients from the production function shown in Table 6, we con-
ducted a counterfactual exercise to assess the impact of equalizing paternal time investments
on child development inequality. Specifically, we evaluate how much the inequality in child
development could be reduced if all children received the same amount of paternal time
investment.

We perform the following steps in our counterfactual analysis. First, we simulate a
synthetic population based on the estimated joint distribution of parameters. We then focus
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on children in Stage 1 and consider three intervention scenarios: (1) equalizing paternal
time investment only in Stage 1, (2) equalizing paternal time investment only in Stage 2,
and (3) equalizing paternal time investment in both stages. In each scenario, all other inputs
and household characteristics in the production function of cognition and health are held
constant. This setup creates an artificial experiment in which paternal time investment is
treated as the “treatment”. Finally, we compute the standard deviation of cognition and
health scores for the population in Stage 3 under the different intervention scenarios.

Table 7: Counterfactual Analysis: Impact of Paternal Time Investment Interventions

Standard Deviation Relative to Baseline (%)

I i i — —
ntervention Scenario Cognition Health  Cognition Health

No Intervention 0.063 0.085 100.0 100.0
Intervention in Stage 1 0.059 0.078 92.7 92.4
Intervention in Stage 2 0.054 0.047 85.0 55.7
Intervention in Both Stages 0.049 0.043 78.0 51.0

Notes: This table presents the results of counterfactual exercises where all children
receive equal paternal time investment. Standard deviations measure inequality
in child development outcomes. Percentages show the reduction in inequality
relative to the no-intervention baseline.

Table 7 compares the standard deviations of cognition and health scores across different
intervention experiences. The first column indicates whether an individual experienced an
intervention and at which stage. The second and third columns report the standard devia-
tions of cognition and health scores, respectively. The fourth and fifth columns display these
standard deviations as percentages relative to the group without any intervention (set at

100%).

From the table, it is evident that children who experienced an intervention at either Stage
1 or Stage 2 exhibit lower standard deviations in both cognition and health scores compared
to those with no intervention experience. Specifically, children with intervention experience
at Stage 1 show a 7.3% lower standard deviation in cognition and a 7.6% lower standard
deviation in health scores relative to the no-intervention group. Similarly, children with
intervention experience at Stage 2 exhibit a 15% lower standard deviation in cognition and
a 44.3% lower standard deviation in health scores. These findings suggest that equalizing
paternal time investment, particularly during Stage 2, could significantly reduce inequality
in child development outcomes.

This artificial experiment suggests that, to reduce inequality in children’s development,
in both cognition and health, policymakers could consider introducing interventions that
influence fathers’ decision-making, thereby balancing the endogenous disparities in paternal
time investment across different groups. Further investigation into parental decision-making
and the design of such policies may be warranted, although these aspects fall outside the
scope of this paper.
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6 Conclusion

This paper contributes to the literature on child development and intergenerational mobil-
ity by investigating the impact of parental time investment on the development of children’s
human capital, with a particular focus on distinguishing between maternal and paternal
contributions.

Specifically, we begin by presenting our empirical findings, which reveal significant het-
erogeneity and endogeneity in paternal time investment. To quantify these impacts, we apply
a dynamic factor model framework to estimate the production function of children’s human
capital, measured through cognitive and health outcomes, using both maternal and paternal
time investments as inputs. In particular, we assume a semi-log linear relationship between
the observed data and the unobserved latent factors. Moreover, assuming that the joint dis-
tribution of the logarithms of the latent factors, and consequently that of the measurement
system, follows a mixture Gaussian distribution, we employ the EM algorithm to estimate
this joint distribution. We then use minimum distance estimation to map the measurement
system onto the latent factors. Finally, for the estimation of the production function, we
utilize a control function approach with local labor demand shocks as instruments to address
the endogeneity of parental time investment.

Through a counterfactual analysis, we demonstrate that equalizing paternal time invest-
ment across different periods of child development significantly reduces inequality in cognitive
and health outcomes by adolescence. Specifically, our results indicate a 22 percent reduc-
tion in the variation of cognitive outcomes and a 49 percent reduction in health disparities
when paternal time investment is equalized during both early and middle childhood. These
findings underscore the critical role of heterogeneity in paternal time investment in shaping
the inequality of children’s human capital development.
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A Appendix Data

The Child Development Supplement (CDS) to the PSID collected comprehensive data in
the following areas: (i) reliable, age-graded assessments of the cognitive, behavioral, and
health status of 3,600 children (including approximately 250 immigrant children), obtained
from the mother, a second parent or parent figure, the teacher or childcare provider, and
the child; (ii) a detailed accounting of parental and caregiver time inputs to children, as
well as other aspects of how children and adolescents spend their time; (iii) teacher-reported
time use in elementary and preschool programs; and (iv) non-time use measures of other
resources—such as the learning environment at home, teacher and administrator reports of
school resources, and parent-reported measures of neighborhood resources.

B Construction of Home Environment Indices: PCA
Results

Construction of Home Environment Indices (CDS/PSID)

We use data from the Child Development Supplement (CDS) of the PSID to construct
three standardized indices of the home environment: (i) parent—child conflict, (ii) cognitive
stimulation /resources, and (iii) orderliness. FEach index is derived by applying principal
component analysis (PCA) to survey items consistently available across CDS waves (1997,
2002, 2007, 2014, 2019). All items are recoded so that higher values represent a worse
environment (for conflict) or a more stimulating/organized environment (for resources and
orderliness). “Don’t know” and “Refused” responses are coded as missing, and in waves
where “0” indicates inapplicability, these values are also set to missing.

Parent—child conflict. For each wave we combine five indicators of family conflict: whether
family members fight a lot, throw things, criticize each other, hit each other, and whether

they calmly discuss issues (reverse coded). Item labels differ slightly by wave, but the un-

derlying constructs are identical. For example, in 1997 we use Q2A42A, Q2A42C, Q2A42E,

Q2A42F, and Q2A42D (reverse coded). The first principal component is extracted separately

for each wave and saved as conflict_year (e.g., conflict_1997).

Cognitive stimulation/resources. This index is based on the number of books in the
home, the number of books the child has read, and the number of cell phones in the house-
hold. For example, in 2002 we use Q22J38 (cell phones), Q22J39 (books in home), and
Q22J40 (books read by child). The first principal component is extracted and saved as
resources_year.
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Orderliness of the home environment. This index is based on interviewer observations
of whether rooms are clean and whether the household is noisy inside or outside. Noise mea-
sures are reverse-coded so that higher values correspond to a quieter, more orderly household.
For example, in 2002 we use Q22K30 (rooms clean), Q22K34 (noisy inside), and Q22K35
(noisy outside). The first principal component is extracted and saved as environment year.

The resulting dataset contains one observation per child (identified by PSID household
and person ID) with variables conflict_year, resources_year, and environment_year for
each available wave (1997, 2002, 2007, 2014, 2019). These continuous, standardized PCA
scores are used in robustness checks to test whether our shift—share instrument predicts

underlying home environment quality.

This appendix reports the detailed PCA results underlying the three home environment
indices described in Section X. For each construct, we show eigenvalues, proportion of vari-
ance explained, and variable loadings. In each case, the first principal component is retained
as the index.

B.1 Parent—Child Conflict (1997)

Appendix Table Al: PCA results: Parent—Child Conflict (1997)

Compl Comp2 Comp3 Comp4 Compbd

Q2A42A: Family fights a lot 0.469  0.093 -0.588 -0.512  0.404
Q2A42C: Family throws things 0.495 -0.218 0.351 -0.468 -0.604
Q2A42E: Family criticizes 0.483  -0.102 -0.444  0.665  -0.342
Q2A42F: Family hits each other 0.468  -0.321  0.508 0.256 0.595
Q2A42D rev: Calmly discuss (rev.) 0.289 0911  0.273  0.105  -0.015
Eigenvalue 2.21 0.91 0.77 0.59 0.53

Prop. Var. 0.44 0.18 0.15 0.12 0.11
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B.2 Cognitive Resources (2002)

Appendix Table A2: PCA results: Cognitive Resources (2002)

Compl Comp2 Comp3

Q22J38: Number of books in home  0.537  -0.686  0.491
Q22J39: Books read last month 0.665  -0.014  -0.747
(Q22J40: Access to phone/cellphone  0.519 0.728 0.448
Eigenvalue 1.24 0.95 0.81
Prop. Var. 0.41 0.32 0.27

B.3 Orderly Environment (2002)

Appendix Table A3: PCA results: Orderly Environment (2002)

Compl Comp2 Comp3

Q22K30: Rooms clean 0.565  -0.687  0.457
Q22K34_rev: Noise inside (rev.) 0.607  -0.030 -0.794
Q22K35_rev: Noise outside (rev.) 0.560  0.726  0.400
Eigenvalue 1.75 0.69 0.56
Prop. Var. 0.58 0.23 0.19
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